Current Transformer Saturation Detection Using Gaussian Mixture Models
نویسندگان
چکیده
منابع مشابه
Current Transformer Saturation Detection Using Gaussian Mixture Models
This paper presents a novel current transformer (CT) saturation detection approach based on Gaussian Mixture Models (GMMs). High accuracy is the advantage of this method. GMMs are trained with secondary current of CT. The appropriate performance of the proposed method is tested by simulation of different fault conditions in PSCAD/EMTDC software. The results show that the trained GMMs can succes...
متن کاملNetwork Anomaly Detection using Fuzzy Gaussian Mixture Models
Fuzzy Gaussian mixture modeling method is proposed in this paper for network anomaly detection. A mixture of Gaussian distributions was used to represent the network data in multi-dimensional feature space. Gaussian parameters were estimated using fuzzy c-means estimation. The method was tested with the KDD Cup data set. Experimental results have shown that the proposed method is more effective...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Research and Technology
سال: 2013
ISSN: 1665-6423
DOI: 10.1016/s1665-6423(13)71516-5